Module5/Lesson3

Module 5: Two Dimensional
Problems in Cartesian Coordinate System

5.3.1 SOLUTIONS OF TWO-DIMENSIONAL PROBLEMS BY THE USE
OF POLYNOMIALS
The equation given by
( = j (6zf + ‘ﬁfj R S s AT .13
ox: oy ox® oy OX ox“oy oy
will be satisfied by expressing Airy’s function ¢(x, y) in the form of homogeneous
polynomials.

(a) Polynomial of the First Degree

Let ¢, =a,Xx+b,y
Now, the corresponding stresses are

2
GX = aay¢21 = O
0%
7y = ax21 =0
oo O
Xy
oxoy

Therefore, this stress function gives a stress free body.
(b) Polynomial of the Second Degree

a c
Let ¢, =72x2 + bzxy+?2y2

The corresponding stresses are

2
0%
oy 6x22 - &
2
Txy == 0 ¢ ==
OXoy

This shows that the above stress components do not depend upon the co-ordinates x and Y,
i.e., they are constant throughout the body representing a constant stress field. Thus, the
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stress function ¢, represents a state of uniform tensions (or compressions) in two

perpendicular directions accompanied with uniform shear, as shown in the
Figure 5.3 below.

A

Ty—=—b>

llti

VVVVVV¢¢

Oy =0Q3

!
Y

Figure 5.3 Constant Stress field

(c) Polynomial of the Third Degree

Let 4153:61—63x3 +b—23x2y+%3xy2 +d—63y3

The corresponding stresses are

52¢
G, = 6y23 =c,x+d,y
52¢
,= ax23 = a,X+b,y
2
xy — _6 ¢3 = _bSX_CSy
oxoy

This stress function gives a linearly varying stress field. It should be noted that the
magnitudes of the coefficients a,,b,,c, and d, are chosen freely since the expression for

¢, is satisfied irrespective of values of these coefficients.

Now, if a, =b, =c, =0 except d,, we get from the stress components
o, =0dy
oc,=0and 7,, =0

This corresponds to pure bending on the face perpendicular to the x-axis.
s Aty=-h, o, =-d;h
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and Aty = +h, o, = +d;h

The variation of o, withy is linear as shown in the Figure 5.4.

+d;h

+d;h ] +d,h “d:h

Figure 5.4 Variation of Stresses

Similarly, if all the coefficients except b, are zero, then we get

o,=0
Gy :bsy
T,y =—bsX

The stresses represented by the above stress field will vary as shown in the Figure 5.5.
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Figure 5.5 Variation of Stresses

In the Figure 5.5, the stress o, is constant with X (i.e. constant along the span L of
the beam), but varies with y at a particular section. Aty = +h, o, = b,h (i.e., tensile),
while aty = -h, o, = -b;h (i.e. compressive). o, is zero throughout. Shear stress 7, is

zero at Xx=0 and is equal to —b,L at X = L. At any other section, the shear stress is
proportional to X.

(d) Polynomial of the Fourth Degree

a b c d e
Let o, =—2x* + 2 xPy + 2 x7y? + L xy® + 2L y*
Z 12 6 YN T Y

The corresponding stresses are given by

2 2
o, =C,x"+d,xy+e,y

2 2
o, =a,X" +b,xy+c,y

Ty = —(%‘)xz —2C,Xy — (%“jyz

Now, taking all coefficients except d, equal to zero, we find

o,=dxy, o,=0, 7, :—%‘yz
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Assuming d, positive, the forces acting on the beam are shown in the Figure 5.6.

Figure 5.6 Stresses acting on the beam

On the longitudinal sides, y = +h are uniformly distributed shearing forces. At the ends, the
shearing forces are distributed according to a parabolic distribution. The shearing forces
acting on the boundary of the beam reduce to the couple.

2 2
Therefore, M = d,h I'2h—ld‘1h 2hL
3 2
2 .3
OrM=—d,h°L
3

This couple balances the couple produced by the normal forces along the side X = L of
the beam.

(e) Polynomial of the Fifth Degree
8

b C d e f

Leto, =5x5 +éx“y+§x3y2 +E“’x2y3 +éxy4 +2—8 y°
The corresponding stress components are given by

82
o, :ay—qu’ :%’x3 +d.x?y —(2¢c, +3a,)xy? —%(b5 +2d,)y°

0? d
o, :—axqif’ = a;X° +byx?y +c Xy’ +?5y3

2

Ty :—ng; =—%b5x3 —C X2y —dgxy® +%(205 +3a,)y°
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Here the coefficients a;,b.,cC.,dare arbitrary, and in adjusting them we obtain solutions
for various loading conditions of the beam.

Now, if all coefficients, except d., equal to zero, we find

Oy = ds[xzy_gysj

3
1
o, = gds y3
z-xy = _dsxyz
Case (i)
The normal forces are uniformly distributed along the longitudinal sides of the beam.
Case (i)

Along the side X = L, the normal forces consist of two parts, one following a linear law and
the other following the law of a cubic parabola. The shearing forces are proportional to X on
the longitudinal sides of the beam and follow a parabolic law along the side X = L.
The distribution of the stresses for the Case (i) and Case (ii) are shown in the Figure 5.7.

o, =—ds(L’h - §h3)

o, =—ds(L’h — %zf)

Case (i)
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— —dsxh’

Ty

Case (i)

Figure 5.7 Distribution of forces on the beam

5.3.2 BENDING OF A NARROW CANTILEVER BEAM SUBJECTED TO
END LOAD

Consider a cantilever beam of narrow rectangular cross-section carrying a load P at the end
as shown in Figure 5.8.

Figure 5.8 Cantilever subjected to an end load

The above problems may be considered as a case of plane stress provided that the thickness
of the beam t is small relative to the depth 2h.
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Boundary Conditions

(TXY )At y=th =0

(Gy )At y=+h =0 (5.14)

These conditions express the fact that the top and bottom edges of the beam are not loaded.
Further, the applied load P must be equal to the resultant of the shearing forces distributed
across the free end.

Therefore, P = - _[jhhfxy 2b dy (5.14a)

By Inverse Method

As the bending moment varies linearly with X, and o, at any section depends upony, it is
reasonable to assume a general expression of the form

2
x = Zy_f =C Xy (5.14b)
where ¢, = constant. Integrating the above twice with respect to y, we get

1
¢= Eclxy3 +yE (X) + f,(X) (5.14c)

where fi(x) and f,(x) are functions of x to be determined. Introducing the ¢ thus obtained
into Equation (5.12), we have

d'f, d*f,
+ =0 5.14d
dx*  dx* (>.14d)
Since the second term is independent of Y, there exists a solution for all X and y provided that
4 4
d 2120 and d Zz =0
dx dx

Integrating the above, we get

f1(X) = CX*+C3X°+CyX+Cs
f,(X) = CeX*+CX°+CgX+Co
where C,, Cs....... , Cg are constants of integration.

Therefore, (5.14¢) becomes

1
¢= Eclxy3 +(C, X2 +CyX% +C,X+Cg)Y +CX° +C, X% +CyX + Cy
Now, by definition,

62
o, :a)(—f:G(czy+c6)x+2(csy+c7)
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% 1
Ty = — (6xﬁyj = —Ecly2 —3c,x* - 2¢,x —C, (5.14e)

Now, applying boundary conditions to (5.14e), we get

1
CZ=C3=C6=C7:03ndC4= _EClhz

Also, — [’z 2bdy = j_hh%cl 2b(y*—h*)dy=P

Solving, ¢; = - 3P = _[Pj
4b h® I

where | = 4 bh®is the moment of inertia of the cross-section about the neutral axis.
3

From Equations (5.14b) and (5.14e), together with the values of constants, the stresses are
found to be

The distribution of these stresses at sections away from the ends is shown in Figure 5.8 b
By Semi-Inverse Method

Beginning with bending moment M, = Px, we may assume a stress field similar to the case
of pure bending:

T

Ty = 7 (XY) (5.14f)

=T =0

6y, =0 Xz yz

y : =T

The equations of compatibility are satisfied by these equations. On the basis of
equation (5.14f), the equations of equilibrium lead to

ot ot
90y | Ol =0, —~=0 (5.149)
OX oy OX
From the second expression above, 7, depends only upon y. The first equation of (5.14g)
together with equation (5.14f) gives

drxy _ﬂ

dy I
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2
or gy = PZLIJFC

Here c is determined on the basis of (z)y=:n = 0

2
Therefore, ¢ = - Ph
21
2 2
Hence, 5y = PL— Ph
21 21
P
Oor 1gy=-—(h?>-y?
y 2|( y)

The above expression satisfies equation (5.14a) and is identical with the result previously
obtained.

5.3.3 PURE BENDING OF A BEAM

Consider a rectangular beam, length L, width 2b, depth 2h, subjected to a pure couple M
along its length as shown in the Figure 5.9

. 2b 1

Figure 5.9 Beam under pure bending

Consider a second order polynomial such that its any term gives only a constant state of
stress. Therefore
2 2
X c
$=a, —+b2xy+i
2 2

By definition,

10
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o,= ﬁ,a :ﬁ,fxy: —(82¢j
oy> 7 ox? OXoy

.. Differentiating the function, we get
0 0° 0
Gx:—¢:Cg, ay——¢=a2 and Txyz—( ¢ =-b,

oy? o oxoy
Considering the plane stress case,
0;= = 1,;,=0
Boundary Conditions
(@ Aty=+ho, =0

(b) Aty=+h, 5,=0
(c) At X = any value,

2b J.;acrxydy = bending moment = constant
yz +h

. +h

. 2bx j_h c,ydy = 2bczx[2} =0

~h
Therefore, this clearly does not fit the problem of pure bending.

Now, consider a third-order equation

Now, o, = ZZszc3x+d3y (a)
o, =aX + by (b)
Ty = -DeX - Cay (c)

From (b) and boundary condition (a) above,

0 = azx + bsa for any value of x
S.oadz = b3 =0
From (c) and the above boundary condition (b),
0=-bsx+csa forany value of X
therefore c;=0
hence, o, = dgy
o, = 0
Ty =0

Obviously, Biharmonic equation is also satisfied.

11
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OX ox°oy® oy

+h
Now, bending moment = M = 2b j_h o ydy

i.e.

ie. M=2b fhhdayzdy

= 2pd; ['y*dy
y3 +h
= 2bd3 |:_:|
3 ~h
3
M= 4bd3 h_
3
ord3= M
4bh?®
3
d3=M where I:4hb

M
Therefore, o, = Ty

12
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5.3.4 BENDING OF A SIMPLY SUPPORTED BEAM BY A DISTRIBUTED
LOADING (UDL)

o
<

q
]
| c f c
~ |
c l | % c

Figure 5.10 Beam subjected to Uniform load

Consider a beam of rectangular cross-section having unit width, supported at the ends and
subjected to a uniformly distributed load of intensity q as shown in the Figure 5.10.

It is to be noted that the bending moment is maximum at position x = 0 and decreases with
change in X in either positive or negative directions. This is possible only if the stress
function contains even functions of X. Also, it should be noted that o, various from zero at

y = -C to a maximum value of -q at y = +c. Hence the stress function must contain odd
functions of y.

Now, consider a polynomial of second degree with
b,=c,=0
aZ

S, =—2X°
9, >

a polynomial of third degree with a, =c, =0
b, , d; ;5
S, = XYy +—2
9; 5 y 5 y

and a polynomial of fifth degree with a, =b, =c, =¢e, =

d d 2
¢5 :_5X2y3 -2 y5 [ f5 :__ds:l

6 30 3
-'-¢:¢2+¢3+¢5
az 2 b3 2 d3 3 d5 2.,3 d5 5
or g =—=X"+—=Xy+—y° +—=>2X - 1
¢ > 2 y 6y 6 y 30y 1)
Now, by definition,
13
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o° 2
6x=ay—f=d3y+d5(xzy—§y3j @)
0° d
ay=ax—¢2)=az+b3y+?5y3 ®)
z-xy =_b3x_d5Xy2 (4)
The following boundary conditions must be satisfied.
M (o). =0
@ (o,)_ =0
(iif) (ay)y:_c =—q

+C

) [loy)dy=0

-C

v fy), dy==aL

+C

(vi) J.(Gx )x:iL ydy =0

—C
The first three conditions when substituted in equations (3) and (4) give
~b,—d.,c*=0

a, +b3<:+d—35<:3 =0

a, —bsc—d—f’c3 =—q

which gives on solving

q 3q 3q
a,=—— b= d =-0
272  4c 48

Now, from condition (vi), we have

+C 2
f{dawds[xzy—gy?’ﬂydy =0

—C

Simplifying,

2 2 2
d3 :—ds(l_ —gh j

14
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3q 7_3
“4h\h* 5
39 7_3 39 2
Ox = 4h(h2 5) 4h3( y 3yj
q). 3q q s
=— — |+—V—-——
% (2) an? " an?

_ (3 3q ..
T, = (4hjx+4h3 Xy

Now, | _1x(2h)’ :87h3:gh3

12 12 3

where | = Moment of inertia of the unit width beam.

R P T A 1
..aX_ZI(L x)y+|(3 5j

aYy o, .2.s
I (AN
o (mj(?» '3 j

T, = —(i)x(h2 ~y?)

21

5.3.5 NUMERICAL EXAMPLES

Example 5.1
Show that for a simply supported beam, length 2L, depth 2a and unit width, loaded by

a concentrated load W at the centre, the stress function satisfying the loading condition

is ¢ = % xy? +cxy the positive direction of y being upwards, and x = 0 at midspan.

15
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W w
2

2

Figure 5.11 Simply supported beam

Treat the concentrated load as a shear stress suitably distributed to suit this function, and so

that Iaxdy = —(V?VJ on each half-length of the beam. Show that the stresses are

(i
S P

o, =0

f-8)

Solution: The stress components obtained from the stress function are

8%
=y =bxy
0%
T T P

16
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Boundary conditions are
0] o,=0fory=+a
(ii) t, =0fory=+a

¢ W
(iii) —_J;Irxydy:?forX:iL
(iv) Io-xdy:Oforx:J_rL

(v) Icrxydy:Oforx:J_rL

Now,
Condition (i)
This condition is satisfied since o, = 0
Condition (ii)
2
0= —(biJ +C
2
_ ba?
2
Condition (iii)
W +ab 5 5
—=—|—la‘ —
L
3
— _9 2a3 _zi
2 3
W _ (2a’h
2 3
orb= _(%3]
4a
and ¢ = —(%J
8a

Condition (iv)

17
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+a 3\N
:[a - [4—a3jxydy =0

Condition (v)

M = Tcrxydy

+a W
- J'_ [Enyzdy

M=
2
Hence stress components are
= _[%jxy
X 433

Example 5.2

: . H 4 X : . :
Given the stress function ¢ = (—jz tan 1(—) . Determine whether stress function ¢ is
T z

admissible. If so determine the stresses.

Solution: For the stress function ¢ to be admissible, it has to satisfy bihormonic equation.
Bihormonic equation is given by

4 4 4
8?+2 82¢2+a?:0
OX oxor® oz

Now, %zﬂ{_( ZXZ 2J+tan‘1(§ﬂ
07 r« X“+12 Z

%:[gjﬁbxﬁ —xz% —x® —xz2 _Xs]

{2 ]

(i)

18
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Also 0% _H| 87 3}

oz’ w _(x2 + zz)

o9 H|8x°—40x°2?

oz :;_ (x2+22)4 }

) __(ZH j{3x3zz—x4]

dz%0x T (X2 +22)3

o' _1{64x322 —24xz* —8x°

ar’ox’ & (XZ +22)4
Similarly,

% _H

ZZ
X 1 {ixz + 72 J

0% :_(ZH j xz?
ox* 7T (x2+zz)2

3% _2H Zz{(sx2 —22)]

ox® Vs

3
(x2+22)

oxt

o9 H {24xz4 —24x322}

(¢ —2*f

Substituting the above values in (i), we get

4 1

T (x2 +zz)

Hence, the given stress function is admissible.

Therefore, the stresses are

5% [24]_ ]
== |17 v
0z T _(X2+ZZ) |
5% (24j_ X2
oy=—5=1—
X T _(x2+zz) |
2 2
and Ty = o¢ :_[Ej LZ
16).(0/4 T (X2+22)
19
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_[24x2* — 24x°2% + 64x°2° - 24x2* ~8x® +8x° —40x°2%] =0
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Example 5.3
. . F
Given the stress function: ¢ = —(—szz(Sd -212).
d

Determine the stress components and sketch their variations in a region included in z =
0,z =d, x =0, on the side X positive.

Solution: The given stress function may be written as

o= (o)

o%¢ (GFXJ [12FJ
=— + Xz
oz’ d’ d®
) 0
ox*

also 0'¢ :—(E]+(£]zz
OX0z 2 3
Hence o, = ( Xj ( 53 )xz Q)
=0 (ii)
o%p 6Fz
T = axéz ( j ( j (iii)

VARIATION OF STRESSES AT CERTAIN BOUNDARY POINTS
(a) Variation of o,

and

From (i), it is clear that o, varies linearly with x, and at a given section it varies linearly
with z.
~ Atx=0andz=+*d, 0,=0

Atx=Landz=0, o, :—[GFLJ

d2
Atx=Landz=+d, o, = _(6F2Lj (12Fde B 6F2L
d d® d
Atx=Landz=-d, o, :_(6F2LJ (12Fde __(18|zLj
d dd d

The variation of o, is shown in the figure below

20
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Z
f
; S
| c,=0 [ 6FL
Z | | . O-x:_( d’) )
_____________ R
0 ' d s
G,=0
N7 T U2

Figure 5.12 Variation of o,

(b) Variation of o,

o, is zero for all values of X.

z

(c) Variationof 7,

We have 7, = [%) —~ (Z—E}zz

From the above expression, it is clear that the variation of 7, is parabolic with z. However,

7,, 1s independent of X and is thus constant along the length, corresponding to a given value
of z.
~Atz=0,7,=0

Atz=+d, 7, :(:L:jj_((:j_f}jz =0

e e Yooy (12
d d d

The variation of 7, is shown in figure below.

21
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- L - 12F
T

Figure 5.13 Variation of 7,

Example 5.4
Investigate what problem of plane stress is satisfied by the stress function

_3F Xy P,
Y= ud [ V3 } 27
applied to the region included iny =0, y = d, X = 0 on the side X positive.

Solution: The given stress function may be written as

_(3F 1 Fxy® P2
¢_(4djxy (4 d° }L(zjy

0

e 3x2 nyj 2p ( Fj
=— : + S =p-|15—

oy (4 @ )T TP )Y
o9 _3F 3Ry

and —_— =
oxoy 4d 4 d°

Hence the stress components are

62 F
_90 15

o, Y p— 'E Xy
5¢

Y ax?

22
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__ 0% _3Fy" 3F

T, = = —
YT xoy 4 d° 4d

(a) Variation of o,

o, = p—(l.S%) Xy
Whenx=0andy=0or +d, o, = p (i.e., constant across the section)
Whenx=Landy=0, o, =p

FL
Whenx=Landy=+d, o, = p —(1.5d—2j

Whenx=Landy=-d, o, = P+1.5F—|2'
d

Thus, at X = L, the variation of o, is linear with y.
The variation of o, is shown in the figure below.

Figure 5.14 Variation of stress &

(b) Variation of g,
_0% _

O-y - aXZ
. o, is zero for all value of X and y

23
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(c) Variation of 7,
3 Fy? 3F
Ty =\ 1743 |\ 244
4 d 4 d
Thus, Ty varies parabolically with z. However, it is independent of X, i.e., it's value is the
same for all values of X.

~Aty=0, 7, = —[EEJ

4 d
S F
At y:id, Txy:[%d—a(d) :|—|:%F:|:O
—3F -3F
4d d 4d
— —--0———+————7‘{ —————————— - -
X
d Tyy
' |
< L >
|
vy

Figure 5.15 Variation of shear stress 7,

The stress function therefore solves the problem of a cantilever beam subjected to point load
F at its free end along with an axial stress of p.

Example 5.5

Show that the following stress function satisfies the boundary condition in a beam of
rectangular cross-section of width 2h and depth d under a total shear force W.

W2
¢ :_[ZhdS Xy (3d —ZV)}

2
Solution: o, = %
oy

24
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op W ,
Now, —/— = — 6xyd — 6X
oy 2hd3[ vd=6y°]
62
ﬁ__ZhM [6xd —12xy]
o, =——[3xd — 6xy]
0%
y = aXZ :0
2
and 7, =— o9
oxoy
W
- 2hd3 [6yd—6y2]
W
= hd3[3yd—3y2]
4 4 4
Also, V*¢ = 84+ 84+ 228 o=
ox" oy" ox‘oy

Boundary conditions are

(@ o,=0 for y=0and d
(b) 7, =0 for y=0 and d

d
© Irxy.Zh.dy =W for x=0and L
0
d
d) M =J.0X.2h.dy=0 for x=0and x =L, M =WL
0
d
(e) IaX.Zh.y.dy:O for x=0and x=L
0

Now, Condition (a)
This condition is satisfied since o, = 0
Condition (b)

r:g/3 [3d% -3d*]=0

25
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Hence satisfied.

Condition (c)

d
W
!hd3 [3yd —3y?]2hdy

d
:&Pzd_ya}
d*| 2 )
_ w3’ s
d®| 2
_aw d®
d® 2
=W

Hence satisfied.
Condition (d)

d
| —%[&d — 6xy J2hdy

0
= —%[&yd —3xy? ];’

=0
Hence satisfied.
Condition (e)

d W
IO _W[SXd — 6xy]2h. ydy

d

2W [ 3xdy? 5
L —2x
| 2 Y }

B 3
:—Z—V;/ 3xd —2xd3}
d
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= _2_Vll|:_ixd3:|
d 2
=WX

Hence satisfied
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